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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

Since digital signals are more immune to noise than analog signals, complex signal 

processing is usually more straight forward in the digital rather than analog domain. The 

rapid evolution in digital integrated circuit technologies has led to ever more sophisticated 

signal processing systems. For these systems to be successful, however, analog-to-digital 

converters (ADC) and digital-to-analog converters (DAC) are required which translate the 

real world analog signals into digital signals and vice versa. 

In this dissertation, high speed data converter techniques are proposed and demonstrated 

that lead to high speed and high resolution data converter design. High speed ADCs find 

extensive applications in digital oscilloscopes, broadband communication and storage 

devices, such as Hard Disk Drives (HDD). The first part of this dissertation concentrates on 

high speed techniques for ADCs. The techniques are suitable for Hard Disk Drive 

applications. High speed and high resolution digital-to-analog converters are necessary for 

measurement equipment, digital video systems and digital audio applications. The second 

part of this dissertation concentrates on the techniques for digital-to-analog converters. A 
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novel and linear Voltage Controlled Resistor (VCR) that is suitable for high speed and high 

resolution digital-to-analog converter is demonstrated. 

1.1.1 High speed analog-to-digital converter techniques 

The classic Moore's law graph (Figure 1) shows the increase in maximum possible 

capability per single IC chip over the three decades since 1960 [1]. Moore's law not only 

applies to semiconductor technology, it also applies to Hard Disk Drive (HDD) systems over 

the last 35 years and it will probably continue to do so in the future. 

Data storage devices find extensive application in communication, computing and 

entertainment systems. Storage devices can be divided into several categories depending 

, L Max. no. of devices 

10M -

wafer scale integration 

Figure 1 The classic Moore's Law Graph 
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Figure 2 Data Storage devices segmentation 

upon the application [2]. Figure 2 shows the relationship between the cost and performance 

of commonly used storage devices, such as CD-ROM, DVD and HDD, etc. 

Because of the low cost of CD-ROM where the access time is on the order of hundreds of 

milliseconds, it has been used for software and audio distribution. File backup and archival 

storage rely on low cost and low performance tape systems. For real-time transactional 

systems where high performance is required, the higher cost system Hard Disk Drive (HDD) 

which have access time on the order of tens of milliseconds have been used. In order to meet 

the emerging demands of high performance computing applications, HDD will continue to 

evolve at a very rapid pace. Advances in read channel technology over the past few years 

have contributed to the large growth in HDD markets. 

Hard disk drives (HDD) currently use Partial-Response Maximum Likelihood (PRML) 



www.manaraa.com

4 

signal processing to increase areal density. PRML is a powerful method which can deal 

effectively with Inter-Symbol Interference (ISI). In most architectures, a high speed ADC is 

required for the PRML signal processing. The requirement for ADC is follows [2]: 1) 6b 

resolution; 2) speed as high as possible; 3) More than 5 Effective Number Of Bits (ENOB). 

In Figure 3, the typical architecture of PRML read channel is shown [3]-[7]. The signal 

stored on the hard disk drive can be sensed by the magnetic sensor at the front end. Then, the 

millivolt signal will be amplified by a low noise amplifier VGA. The gain of the VGA will 

be controlled through the gain control loop. After that, the signal will be filtered to avoid 

aliasing before the ADC. After the FIR equalizer, it will be detected by the Viterbi circuit. 

Then, a DSP will process the data. Because of the very high speed operation requirements, 

most of the ADCs for these circuits are presently implemented using flash architecture [8]-

[14]. 

FLASH architecture provides the highest speed using 2° -1 comparators to perform an n-

bit conversion. As shown in Table 1, ten out of the top eleven high speed analog-to-digital 

converters are flash converters. 

HDD 

LPF ADC VGA DSP FIR 
Equalizer 

Viterbi 
Detect 

Gain Control 

Figure 3 Block diagram of PRML read channel 
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Table 1 Rank-ordered ADCs by speed figure of merit 

Author Type Speed Technology # 

of bits 

Power 

( m W )  

Xiao [15] Flash 8G SiGe 4 500 

Ducourant [16] Flash 3G GaAs 4 150 

Ducourant [17] Flash 2.2G GaAs 5 300 

Wakimoto [18] Flash 2G Bipolar 6 2000 

Poulton [19] Interleaved 

flash 

1G GaAs 6 16000 

Uyttenhove [8] Flash 1G 0.35um CMOS 6 ? 

Sushihara [9] Flash 800M 0.25um CMOS 6 400 

Nagaraj [10] Flash 700M 0.25um CMOS 6 187 

Valberg [20] Folding 650M Bipolar 8 850 

Matsuzawa [21] Flash 600M Bipolar 8 4000 

Tamka [22] Flash 500M 0.4um CMOS 6 400 

In the extremes of speed, however, exotic technologies must still be used to achieve 

conversion rates beyond those obtained with a conventional silicon implementation [15]-

[17][23]. In this research, a 4-way, time-interleaved flash ADC is demonstrated to achieve 

conversion speed up to 900MS/s using a 2.5v digital .25 micron bulk CMOS process. The 

maximum conversion rate practical with any technology is extended by the use of an array of 

well-matched flash ADCs. This technique trades off increased die area for increased speed in 

a nearly one for one relationship but at reduced performance if the ADCs are not well 

matched in terms of gain, offset, nonlinearities and sampling skew [24]. In the approach 
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considered here, these problems are minimised by use of a simple method that ensures the 

individual ADC gain, offset and nonlinearity characteristics are inherently almost identical. A 

simple four phase clock generator is demonstrated which introduces only a small sampling 

skew. While this scheme has been demonstrated in the comparatively simple 6-bit flash ADC 

case, this same scheme may be applied to the first n-bits of a pipeline converter (or other 

converter method) enabling the same identical performance in the most significant bits. 

1.1.2 VCR for mismatch adjustment in analog CMOS circuits 

High linearity and high resolution A/D and D/A converters are necessary for 

measurement equipment, digital video systems and digital audio applications. In digital video 

systems, more complicated and advanced signal processors are needed for digital video 

processing to enhance video quality. Therefore, high resolution and high speed Digital-to-

Analog converters are required to convert digital signal to analog signal. Especially in HDTV 

and next generation camcorders, high resolution (more than 10 bits) and high speed (faster 

than 80MHz) D/A converters are needed [25]. High resolution D/A converters are also 

demanded in digital audio applications, such as Compact Disc Players [26]. Based on 

matching of components in a standard process only, it is very difficult to achieve such high 

accuracy. In order to achieve such high resolution, a commonly used method is the Sigma-

Delta architecture, which exchanges speed for resolution. So, in order to achieve high speed 

and high resolution, the analog circuits often require laser trimming or digital error correction 

of precision components for reasons of linearity or offset adjustment. Therefore, additional 

calibration techniques are introduced. However, with some calibration techniques, a special 
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calibration period is required [26]. During this calibration period, the converter can't be used 

for conversion, which makes this technique limited in some application. Other calibration 

techniques, like laser trimming and external adjustment increase the cost too. Also, those 

methods are ofter sensitive to temperature and aging. 

A favorable alternative is dynamic element matching [28] which dynamically adjusts 

components (typically current sources) in order to make them match. When implemented 

with conventional MOSFETs, however, switch feedthrough [29] effects limit the usefulness 

of the scheme unless circuitry is made either very large or very slow. This is because precise 

error adjustment currents on the order of the required mismatch (a few percent for high 

resolution application) are difficult to realize unless device ratios are made very large or 

clock transitions are made to be very slow. These drawbacks are eliminated in our scheme 

which slightly modulates the resistivity of a standard well resistor in order to achieve 

necessary current matching. This technique can be used to produce multi copies of current 

units. Therefore, it is suitable for the calibration of high-resolution D/A converters that are 

based on equal current sources. 

1.2 Organization 

In chapter 2, both static and dynamic characteristics of ADCs are introduced. DC testing 

and dynamic testing of ADCs are discussed also. In chapter 3, error sources in flash A/D 

converters are studied. Timing error is analyzed in detail. In chapter 4, a prototype of time-

interleaved A/D converter architecture is proposed. The mismatch between the converters is 

analyzed in terms of timing skew, gain mismatch and converter offset. Two chips have been 
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designed with this new architecture and detailed analysis of both architectural considerations 

and circuit design blocks are discussed. In chapter 5, digital end circuitry of the converter is 

discussed and simulation results are demonstrated. Layout is a very important issue in the 

whole procedure and is discussed in chapter 6. In chapter 7, testing setup and testing results 

are demonstrated. In chapter 8, the properties of the new VCR structure will be studied. The 

structure and characteristics of the VCR will be analyzed and a new model proposed. In 

chapter 9, a favorable current calibration principle is introduced. A new calibration principle 

with VCRs for matched current sources is proposed and simulation of this scheme is 

demonstrated. A conclusion is given in chapter 10. 
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CHAPTER 2 CHARACTERIZATION OF ADC 

There are a number of ways to measure and evaluate ADC performance. Here we only 

focus on primarily those characteristics that are important in Hard Disk Drive applications. 

Static characteristics of ADC include Integral Nonlinearity (INL), Differential Nonlinearity 

(DNL), gain error and missing codes. The dynamic characteristics of A/D converters are 

usually signal to noise ratio (SNR), SNDR, ENOB and SFDR. In this chapter, the 

characterizations of ADC are discussed. 

2.1 Static characteristics 

Integral nonlinearity is the deviation from a characteristic line. The characteristic line can 

be defined differently. It can be the line connecting the endpoints of the converter's transfer 

curve. Or, it can be defined as the best fit line of the converter's transfer curve. 

Assuming the linear function for the characteristic line is 

y = ax + b ( l ) 

And the function for the real transfer curve of ADCs is 

y =  f( x) ( 2 )  

Then, the integral nonlinearity ( INL ) can be derived using equation (3). 
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INL{x) = f(x)-(ax + b) ( 3 )  

In Figure 4, integral nonlinearity error in a 3-bit A/D converter is shown, along with 

differential nonlinearity (DNL) and missing code. In an ideal data converter, each analog step 

is 1LSB. Differential nonlinearity (DNL) defines the deviation of the analog step from 1LSB 

Assuming each digital output code y corresponds to a range of analog inputs between 

x,., and Xj. Then, the differential nonlinearity ( DNL ) can be derived. 

The nonlinearity of the converter is usually summarized as the maximum absolute DNL 

and INL. If the maximum of DNL of an ADC is greater than 1LSB, missing code will appear 

in its transfer curve. Both DNL and missing codes are demonstrated in Figure 4 also[30]. 

Gain error is the deviation of the real characteristic line from the ideal characteristic line. 

A small constant gain error or offset usually is not a big concern in most applications. 

DNLt = xt — X(_[ — \LSB ( 4 ) 

Characteristic line 

Ideal Curve 

O i l  c o d e  
Missing y INL=ILSB 

Figure 4 Transfer curve of 3b A/D Converter 
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2.2 DC testing of analog-to-digital converter 

Figure 5 shows the testing setup for static performance of an ADC. Usually, the D/A used 

here should have relatively higher performance than the analog-to-digital converter under 

test. A slow linear ramp signal generated by the signal source feeds into the ADC. Then, the 

digital output will be translated into an analog signal by the DAC. The output of the DAC is 

subtracted from the input signal. By doing this, INL and DNL of the ADC can be measured. 

An alternative way of measuring the linearity of an ADC is Code Density Test (CDT), 

which evaluates the histogram of the generated output codes [31][32]. The main advantage of 

Code Density Test (CDT) is that it allows us to test the ADC without the need for a high 

speed high resolution DAC which is required in a traditional measurement technique, as 

shown in Figure 5. The output of code density or histogram is the number of times each 

individual code occurs. For example, with a full scale ramp and an ideal ADC, the possibility 

for each individual code is the same. In this case, the histogram should be uniformly 

Clock Generator 

Signal 
Source 

A/D 
Under 
Test 

D/A 

Figure 5 Testing of static characteristics 



www.manaraa.com

12 

distributed. Any output code density equal to zero indicates a missing code. The result of the 

Code Density Test (CDT) gives the direct result of differential nonlinearity (DNL). By 

integration of the measurement results, integral nonlinearity (INL) can be derived. The choice 

of the input waveform can also be a pure sine wave since the mathematical model of the pure 

sine wave is well known to us. However, the nonlinearity estimated by CDT does not provide 

precise information on the performance of high resolution ADCs [33]. 

2.3 Dynamic characteristics 

As we mentioned before, analog-to-digital converters translate the analog signals into 

digital signals. All analog-to-digital converters have finite resolution. During analog-to-

digital conversion, quantization error is introduced due to finite resolution. 

In Figure 6, the residue after conversion is plotted (assuming the input signal is a slow 

linear ramp ). The residue is defined as follows. 

residue = y ( LSB ) - x ( LSB ) (5) 

This residue is so called quantization error. As we can see, for an ideal A/D converter, the 

Residue 

1/2LSB 

Analog Input 
-1/2LSB 

Figure 6 Residue of a 3-bit A/D Converter 
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quantization error is in the range of (-1/2LSB, 1/2LSB). Then the mean-square-error due to 

quantization can be calculated. 

Assuming the quantization error is uniformly distributed in the range of (-1/2LSB, 

1/2LSB), the rms of quantization error can be represented by: 

Vn
2=±LSB2 (6) 

Assume Vpp is the peak-to-peak voltage of the input sine wave. The rms value of the 

input sine wave is represented by 

(7) 

where Vpp is equal to 2°"lLSB. 

Assuming the quantization error of a sine wave is the same as in equation (6). Then, the 

signal to noise ratio for a sine wave input can be calculated as follows. 

S/N = 2 LSB = VTS2" (8) 
V« ^-LSB 

12 

The signal to noise ratio can be expressed as (9) also. 

S/N = 6.02/1 +1.76 (dB) (9) 

Equation (9) is derived by assuming uniformly distributed quantization error for a sine 

wave input. However, it is intuitively known this is not true [34]. For a sinusoidal signal, the 

probability density function (PDF) of x is given by 



www.manaraa.com

14 

where x is regarded by the quantizer as a random variable and A is a multiple of the 

quantizing step. The quantization error (normalized with respect to quantizing step) can be 

represented by [34] 

+ (11) 
12 n «=i n 

J0(27tnA) is a Bessel function of zeroth order. As A increases, the quantization error 

approaches to a normalized value of 1/12, which is the same as shown in equation (6). 

Due to the nonlinearity of the circuitry, harmonic distortion can be introduced. SNDR is 

defined as the ratio of the signal power to the total of noise power and harmonics power. 

ENOB is defined based on SNDR. The definition of ENOB is shown in equation (12). 

ENOB = {SNDR -1.76)/6.02 (12) 

With equation (12), if Signal to Noise and Distortion Ratio (SNDR) is known, then 

Effective Number Of Bits (ENOB) can be calculated. 

Another important characteristic of ADC is the Spurious Free Dynamic Range (SFDR). 

SFDR is defined as the ratio between the fundamental signal and the largest distortion 

component. 

2.4 Dynamic testing of analog-to-digital converter 

Figure 7 shows the setup for the dynamic performance of ADC. The input sine wave 

signal generated from the signal source will go through a low pass filter to remove the 

harmonic distortion. The digital output from the ADC will be captured by the high speed 

logic analyzer and translated into analog signal. Then, the signal can be analyzed by using a 
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PC LPF Signal 
Source 

Clock 
Generator 

A/D 
under 
test 

Logic 
Analyzer 

Figure 7 Dynamic testing setup for ADC 

Fast Fourier Transform ( FFT ). Enough samples are needed to obtain accurate information. 

In order to minimize the "leakage" due to FFT, a window function must applied. With the 

frequency information from FFT, SNR, SNDR and ENOB can be calculated. ENOB can be 

determined via histogram testing also [39]. 
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CHAPTER 3 ERROR SOURCES IN FLASH A/D CONVERTER 

3.1 Generic scheme of flash A/D Converter 

In Figure 8, a generic scheme of flash A/D converter is shown. Comparators of 2° -1 are 

used to locate the position of the analog input relative to the reference voltage which usually 

are generated from the resistor string. 

All the comparators will sample its corresponding reference voltage first, then, the 

Figure 8 Generic scheme of flash ADC 
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sampling capacitors are switched to the analog input Each comparator will compare the 

differential analog signal with its differential reference voltage sampled and send out the 

digital signal as '0' or *1* simultaneously. If the analog signal is greater than the reference 

voltage, the digital output of the comparator is '1'. Otherwise, it is '0'. The combined output 

of all the comparators appears as thermometer code, ones at the bottom while zeros at the top. 

The transition from 1' to '0* depends upon the analog voltage level. Ideally, there is only 

one transition point where the digital code changes from '1' to '0'. Then, the transition will 

be detected and the output 'high' will be translated into binary code by an encoder. There are 

many things that could possibly go wrong. In the following sections, the error sources of this 

scheme will be analyzed in detail. 

3.2 Comparator offset 

In a flash A/D converter, comparators make decisions between the analog input and its 

reference voltage Vref. When V* is greater than Vref, it sends out digital signal 'I'. When Vin 

is less than Vref> the digital output is '0'. However, this is how the ideal comparator works. In 

reality, each comparator has its own offset. In Figure 9, the comparator offset is shown at the 

input as VM. In this case, instead of comparing to Vref, the comparator is making decision 

between ± Vœ and Vref. 

Comparator offset may be contributed by several sources. One comes from the process 

mismatch, which contribute static offset to the comparator. There are many offset reduction 

techniques to compensate the offset [35]. A simple technique to reduce the static offset is by 
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OS m 

Comparator 

ref o-

Figure 9 Comparator offset 

doing auto-zeroing [38]. Another contribution is the charge injection during switching, which 

is dynamic offset of the comparator caused by switches. Proper switch phasings can to some 

degree minimize the dynamic offset. 

Because of the comparator offset, the combined output of the comparators may not remain 

as a thermometer code any more, especially at high speed. It may have a "bubble" in it, just 

like bubbles in thermometer. In other words, the transition from '1' to '0' does not happen 

only once, it may happen several times. Simply detecting the transition from '1' to '0' based 

on a simple two input NAND gate or NOR gate may cause dramatic errors in encoding. 

Several techniques have been employed in this design to minimize encoding error. 

3.3 Timing error without sample and hold 

Another important error source is timing error. In an ideal flash ADC, all the comparators 

compare the same analog input with different reference levels. This requires the same 

propagation delay of both clock signal and analog signal traveling for 2°-l comparators. In 

reality, this is impossible. If we can have a sample and hold at the input of the analog signal, 

the effect of timing skews can be minimized. In this section, we will explore the possibility 

of having a sample and hold for the analog input signal. 
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3.3.1 Operational Amplifier 

Let's find out in order to achieve 6b accuracy at sampling rate 600Msample/s, what the 

bandwidth of the operational amplifier needs to be [43]? Figure 10 shows the block diagram 

of an Opamp in its hold phase. 

Assume the transfer function of the operational amplifier is as follows, 

where Aq is the DC gain of the operational amplifier, t is the time constant of the open loop. 

The close loop gain G is defined as 

(13) 

4> 
g = H.-A+l 

K 1+ SXFB 

(14) 

where Tra is the time constant of the closed loop. 

R 

R 

v . °  V\A 
Opamp O y 

O 

i C 
L 

Figure 10 Block diagram of an operational amplifier in its hold phase 
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If Vj is a unit step and the output of the amplifier is always a linear function of its input, 

the output would be 

V0 = (15) 
Aq+2 

For the output to settle within 1/2LSB at its final value, the following condition needs to 

be met, 

— 2 
(16) 

The condition can be rewritten as: 

t > nxFB ln(2) (17) 

For an operational amplifier to get 6 bits resolution with sampling frequency at speed 

600Msample/s, the 3dB bandwidth of the closed loop needs to be greater than 2.5GHz. Due 

to relatively high capacitive load of CL, it is practically impossible to achieve this high speed 

Opamp using most advanced CMOS technology. 

3.3.2 Source follower 

An alternative way to achieve a sample and hold is using a simple source follower as 

shown in Figure 11 along with sampling switch St. However, switch induced error, error due 

to input dependent sampling instant and most of all, error induced due to nonlinearity of the 

source follower will distort the analog signal. All these error sources related with the source 

follower as a sample and hold are analyzed in detail in this section. 
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3.3.2.1 Switched induced error 

The error voltage induced by the turning off of the switch is one limiting factor in the 

scheme shown in Figure 11 [44]. When the switch S, turns off, some portion of the charges in 

the channel of the switch transistor is transferred to the gate of M, and causes error. As we 

can see, the error is input dependent. Even though fully differential scheme will minimize the 

error, however, it can not be canceled exactly. For slow switching-off, 

The error induced on the sampling capacitor CL 

(18) 

Figure 11 Source follower as sample and hold 
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where 

P = ftCm — aw</ = P// — V s  — VT 

VH and VL are high and low voltage level for clock signal. Vs is the source voltage of the 

switch, which is equivalent to V; in Figure 11. U is the slope of the falling edge of the clock. 

Col is the overlap capacitance of the switch transiter and Cox is the gate capacitance of the 

switch transistor. For fast switching-off, 

2Cl 

Ve = 
CL 

VHT ~ Ek. 
<>UCL 

+ 7r-(K+rT-vL) (19) 

For a fully differential scheme, the switch induced error would be 

Vd i f f=^(V sx-Vs2) (20) 

Assume the overlap capacitance Col is 1% of Cu and Vsi-Vs2 is 2 volt, then the switch 

induced error would be 20 millivolts. From equation (20), we can easily observe that the 

smaller the C0/Cu the smaller the error. However, small C0/CL conflicts with high speed 

operation requirements. Besides, the switch induced error tends to be bigger due to mismatch 

of the input pairs in fully differential structure. 
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3.3.2.2 Input dependent sampling error 

The NMOS switch will only be turned on when the gate voltage is higher than the input 

by V,. If the analog input is not constant, the real sample points differ depending on the 

analog 

input. As we can see in Figure 12, the real sampling time is different from the ideal sampling 

time and the sampling instant depends on the input signal. Based on this fact, it has been 

shown that harmonic distortion will be introduced[45]. 

Signal to Distortion Ratio (SDR) can be predicted using equation (21). 

SDR̂  = 201ogl0(-̂ —) (21) 

sampling clock 

\ 

sampling time 

ideal 
sampling time 

Figure 12 Input dependent sampling skew 
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where is the voltage swing of the clock, 4, is the frequency of the input signal and tF is 

the falling time of the sampling clock Assume the voltage swing of the sampling clock is 2.5 

volts, the amplitude of the analog input signal is 500mv, the frequency of the analog input 

signal is 250MHz, and the clock falling time is 200ps, then the maximum signal to distortion 

ratio SDR^ is 40dB. Bootstrap schemes may minimize the error, however, they limit the 

speed [36][37]. 

3.3.2.3 Nonlinearity of source follower 

Another common problem with a simple source follower is the nonlinearity of its transfer 

curve over a wide range. Two sources contribute to its error. First of all, is the length 

modulation effect that makes the output impedance of the transistor a finite value. The 

second source is the back bias that modulates the threshold voltage of the transistor. By 

connecting the substrate of M, to its source, it will improve the linearity of the source 

follower [47]. Because of all the error sources discussed above, it is very difficult to design a 

source follower which has more than 6 bits accuracy for 250MHz analog input with 2.5 volts 

power supply. 

Without a sample-and-hold at the analog input, each comparator may sample the analog 

input at different times due to different propagation delays for each signal path. Figure 13 

shows the relation between the Effective Number of Bits (ENOB) and timing jitter simulated 

using Matlab by averaging 100 converters with the assumption that the timing jitter is 

normally distributed with zero mean. As we can see, around 2Ops timing error will introduce 
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Figure 13 The relation between ENOB and timing jitter 

about lbit error into 6b ADC system at Nyquist rate when sampling at a speed of 

500Msample/s. This places a very strict requirement both for clock generation and clock 

distribution. 

3.4 Gain error 

As we discussed before, the comparator array compares the input signal with the reference 

and generates the corresponding digital output. At full scale, The peak-to-peak voltage of the 

input signal should be the same as the reference voltage. But what if the reference voltage is 

less than the of the analog input? From the simulation using Matlab, we can see that the 

output spectrum will have the odd harmonic components of the analog input. In Figure 14, 

the spectrum is shown with gain error. 

Using Matlab, we can find out quantitatively how this will affect ENOB due to mismatch 
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1 
5fL Frequency 

Figure 14 Output spectrum with gain error due to clipping 

between the analog input range and reference range. Figure 15 shows the ENOB with the 

difference between the reference range and analog range normalized in LSB. As we can see, 

if the reference range is 4LSB less than the analog input range, it will introduce I bit error 

into the system. 

Figure 15 The relation of ENOB with the error between the reference range and the analog 
input range 
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CHAPTER 4 PROTOTYPE OF TIME-INTERLEAVED FLASH ADC 

High-speed data conversion and signal processing circuits are demanded for data 

communication, data storage, etc. In the extremes of speed, exotic technologies must be used 

to achieve data rates beyond those obtained with a conventional silicon implementation 

[15][16][17]. By using a time-interleaved architecture, the maximum conversion rate 

practical with any technology is extended by the use of an array of identical channels. This 

topology applied to an analog-to-digital converter is shown in Figure 16. The timing strategy 

ADC 

ADC 

ADC 

ADC 

<D| Oj * * * 

Clock Generator 

Figure 16 Generic scheme of time-interleaved ADC architecture 
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of a four-way, time-interleaved ADC is shown in Figure 17. Basically, each individual ADC 

is running at a speed of 1/T but at different clock phases that are generated by the multi-phase 

clock generator. Ideally, the phase differences between adjacent clocks are the same. The 

outputs from four converters can be combined by a high speed'MUX', resulting in a high 

in 

<t> <D <t> <t> <j> <t> <r> <t> o, <t>, <t>, <t> <t>, <J>, <D. <t> 

Figure 17 Timing of ADC 

speed ADC with a sampling speed of 4/T. So, the sampling frequency of the whole ADC is 

extended by four times. By doing this, the speed requirements for each sub-ADCs are 

relaxed. 

All the error sources mentioned before will also introduce errors into time-interleaved 

flash A/D converter. Besides those error sources mentioned in the previous chapter, the 

mismatch between the converters offset and gain will also degrade the performance of the 

ADC, as does the phase skew between the channels. Before we get into the design detail of 



www.manaraa.com

29 

the prototype of four-way, time-interleaved flash analog-to-digital converter, the error due to 

mismatch between channels will be analyzed. 

4.1 Error analysis in time-interleaved analog channels 

As we discussed earlier, time-interleaved techniques trade off increased die area for 

increased speed in a nearly one for one relationship but at reduced performance if the analog 

channels are not well matched in terms of gain, offset and sampling skew. 

4.1.1 Phase skew 

As we discussed before, a high speed operational amplifier is very difficult to design for 

use in a sample-and-hold. If we eliminate the sample and hold at the analog input, however, 

timing differences with the analog channels will degrade performance, usually called phase 

skew. 

For an m-way converter array, assume the original sampled data sequence is [48] 

S — L/X*o )*/*(' 1 )>•••>1 )>•••] (22) 

The digital spectrum, F(<o), of S can be represented by 

F(co) = J[û)-k{2irl MT)]tm I -jmtoT 
> 

(23) 

Assume the systematic timing error for each channel is rmT, then 

(24) 

T is the sampling period of the composite array. 
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For a sinusoidal eyû>™/, the Fourier transform is given by 

Fa  (<y) = 2x6 (û) -  <y,„ ) (25) 

Substituting (25) into (23), we have 

F(û>) = —Y ï 2XÔ[CÙ - (ùm - k{2n/MT)]e~jrm2^'fse~jkm{27llM) (26) 
MT m=0k=-ao 

where f$ is the sampling frequency, which is equal to 1/T. f0 is equal to 2tt/(d0. 

Equation (26) can be rewritten as 

F{co) =  -  S  A{k)2nd 
Tk=-« 

, ,  2n 
(27) 

where 

A(k) = "z1  

m=0 

_L_ p~Jrm -"fin ! fs 
M 

-jkm(2x/M) (28) 

For a sine wave input, the Fourier transform is given by 

Fa  (<y) = jjt\Ô (û) + o) i n  )-S(co-com )] (29) 

Substitute (29) into (23), we have 

F(û)) = ̂ - Î [A{k)27uô(û) + û) i n- k^-) + B{k)2xô{a> -co i n-k -^)] (30) 
1 k=-co Ml Ml 

where 

A(k) = K ,tm(2«M) 
2 j m=0 M 

(31) 

B(jfc) = ]e-y*m(2^/A/) (32) 



www.manaraa.com

31 

It is very easily to prove that 

A{k) — —B*(M - k) (33) 

From equation (30), we can observe that due to timing skew, the digital spectrum 

comprises M pairs of line spectra, each pair centered at the fractional of the sampling 

frequency of fs, such as fs / M ,2 fs / Af — 1 )fs/M. Table 2 summarizes the digital 

spectrum in the frequency range of (O.fJ for a four-way, time-interleaved array. 

Table 2 Summary of the digital spectrum with timing skew 

k Frequency 

(co) 

Amplitude 

0 /o 1 B(0) | 

1 -/0+//4 >
 

w
 II 1 

/0+//4 1 B(l) | 

2 -/0+//2 1 A(2) 1 = | B(2) | 

/0+//2 1 8(2) | 

3 -/0+3//4 |A(3)| = |B(1)| 

/0+3//4 1 B(3) 1 

4 -fo+fs I II 1 

The digital spectrum with timing skew for a four-way, time-interleaved array is shown in 

Figure 18, along with the amplitude for each spectral line. As we can see, due to the timing 

skew between the channels, the digital spectrum comprises side lobes around the fractions of 

the sampling frequency. From (31) and (32), we can also observe that the amplitude for each 
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Amplitude 
• 

|B(0)| ;b(0)| 

!B(3)| 
|B(1)| 

|B(2)| |B(2)| 

_LL 

!B(3)| 
|B( 1)| ' 1 

fin ( j.) 

-f,-fs/4 t'-ts/4 

/ [i_ \ / 3 f, \  é fs Frequency 

S 1 )  % 
\ -t>3fs/4 t>3fs,4 ! 

-ty+fs/2 t>fs-2 -t>fs 

Figure 18 Digital spectrum with timing skew 

pair centered at the fractional of the sampling frequency are functions of timing skews which 

are not necessarily equal to each other. 

By Parseval's theorem, we have 

p,=ï;W)i2=^ 
*=0 4 

Af-l „ 1 
/,2 = EI5(*)I =7 

ir=n 4 

(34) 

(35) 

The total signal and distortion power is 

P = P l+P1=\/2 (36) 
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Assume rm is normally distributed with standard deviation of crt and zero mean. The signal 

power located at <o„ is 

|fl(0)|2= 

4 

4 

1 
c-jrm2*f in/fs  

m=0 2Mj 

M-1 1 1 
ï T7(1+y>„2<„/,-~Arm2xf,Jfsy 

"1=0 M 2 

A/-I 2 
z r„ 

M-l 
1 Af-l 1 , ' m 
^ y+y2<//J^-k2^n//J)2^-
M m=0 M 2 M 

= ̂ |1-5(2<//,)2<T,2 |2 

The noise power in the range of (0,l/(2fJ) should be 

(37) 

noise = (P - 215(0) |2 )/ 2 

lz .2 2 
1_1Z 

4 4 

2^ 

V 
12 (38) 

The signal to noise ratio can be obtained 

&VR = 101ogl0 "|S(0)|n 

v ziozse y 
« 10 log 10 

]_ 
4 

7 ~ t0 ~ ~ (2 n<Ttfin I fs)1)2 

v4 4 2 

20 log 10 1 

2 ™tfjfs 

(dB) 

(39) 
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From equation (39), we can easily observe that the signal-to-noise ratio (SNR) is a 

function of &tfin / fs, where a, is the standard deviation of the timing skew, fin is the analog 

input frequency and f, is the sampling frequency. If <Jtfm / fs doubles, the signal-to-noise 

ratio (SNR) will decrease about 6dB. 

Figure 19 shows the comparison between the numeric results obtained using equation (39) 

and the discrete time simulation results. The simulated results were obtained by averaging 

100 arrays using Matlab. As we can see, the higher the time-interleaved number M, the 

smaller the error between the numeric results and the simulated results. If the interleave 

number is greater than 12, equation (39) can be used to estimate the signal-to-noise ratio 

very precisely. 

M =4 
solid lines — simulation results. _ 

M=12 

1.5 3.5 

Figure 19 The relationship between SNR and the timing skew 



www.manaraa.com

35 

For a four-way, time-interleaved array, the signal-to-noise ratio can be estimated using the 

equation (40). In order to achieve 6b accuracy at Nyquist rate with sampling frequency of 

500MS/s, the timing skew between the different channels needs to be smaller than 12ps 

based on equation (40). 

4.1.2 Gain mismatch 

Based on equation (23), we can derive the digital spectrum of time-interleaved arrays with 

gain mismatch. Gain mismatch can be modeled by making the amplitude of the input signals 

sampled be different for different channels. Assume for each individual analog channel, the 

analog input signal is Am sin(<y,„/), where m=0, ... M-l. Based on equation (3), we can 

derive the digital spectrum of the composite time-interleaved array with gain mismatch. 

For a sine wave Am sin(û>,„r), the Fourier transform is given by 

SNR = 201ogl0 : +3(dB) (40) 

Fm\co) = jnAm[ô(<o + &in ) — ô(cû — œin )] (41) 

where m=0,1,... M-l 

Assume there is no timing error, which implies that rm is equal to zero. 

Substituting (41) into (23), we can get 

F{CÙ) = — I A{k)[2nô{(a + coin - k—-) - 2TZÔ(CÙ - O)IN - k 
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where 

/ -jkm— 
Ak) = TX7 s Ame " (43) 

ZiW m=o 

Table 3 gives the summary of the digital spectrum for a four-way, time interleaved array 

with gain mismatch. The digital spectrum of the four-way, time-interleaved array is shown in 

Figure 20. Comparing Figure 20 with Figure 18 which shows the digital spectrum of a four-

way, time-interleaved array with timing skew, we can see that both spectra lines are located 

at the same frequency. The digital spectrum with gain mismatch also comprises M pairs of 

line spectra that are centered at fractions of the sampling frequency f„ such as f/M, 2f/M,..., 

(M-l)fj/M, which is the same as that with timing skew. However, for the digital spectrum 

with gain mismatch, the amplitude for each pair is the same, which is not necessary true for 

the digital spectrum with timing skew. 

Table 3 Summary of digital spectrum with gain mismatch 

k Frequency (to) Amplitude 

0 fo M(0)| 

1 -fo+m 1 A( I) | 

fo+W M(i)| 

2 -/0+//2 M(2)| 

/0+//2 1 A(2) 1 

3 -/0+3//4 M(3)| 

/0+3//4 |/4(3)| 

4 -/o+/, M(4)|=M(0) 
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Amplitude 
A 

|A(0)| 

!'A(I)| !A( I i 

|A(3)| |A(3)| 

|A(2)| |A(2) 

_1lL 
y a y 

/ 4 C. 1 2 / 
-fi,-fs/4 t'j-i-fs.4 ! \ 

|A(0)| 

1 
/ 3 f t  \  4 f s  Frequency 

-t;-3fs/4 t>3fs/4 

-f0+fs/'2 t>fc/2 -t;rts 

Figure 20 Digital spectrum with gain mismatch 

Assume A*, is normally distributed with standard deviation of oA and mean of A. By 

Parseval's theorem, we have 

M-l 

M-\ ' M-\f A \2 

N = ZMwl 
i=0 *=0 

7W 
\2M j 

(44) 

M-l 2 1 o 

A = Zl^)| + A ) 
*=o 4 

The total signal and distortion power is 

(45) 

(46) 

The signal power of the fundamental is 
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M(0)l2= 
1 M-l 

zmS4" £ (47) 

The power of the noise in the range of (0,1/(20) is 

noise = (P - 21 >4(0) |2 )/ 2 = jaA
2 (48) 

Assume the gain a*, for each converter is proportional to with constant efficient f$, 

then 

am = PAm (49) 

where m=0, ...M-l 

So, we have 

= P°A 

a — A 
(50) 

Then, the signal-to-noise ratio is 

£A/R = 101ogl0 _4 

w 
x-

= 201ogl0 A^ 

\<*AJ 

a = 20 log 101 — 
\ 

« 20 log 10 a 
(51) 

y 

From equation (51), we can see that, if the gain mismatch can be decreased by two times, the 

SNR can be increased by about 6dB. Figure 21 shows the comparison between the numeric 

results obtained based on equation (51) and the simulated results obtained by averaging 100 

arrays. As we can see from Figure 21, the numeric results are very close to the simulated 

results when the time-interleaved number M is greater than 12. For a four-way, time-

interleaved analog array, the signal to noise ratio can be estimated using equation (52). 
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9. 

CO 

numeric results 
solid lines — smaulatio 

VI =8 
ns results M =4 

0.004 0.006 0.006 0.01 0.012 0.014 0.016 0.016 

Figure 21 The relationship between SNR and gain mismatch 

In order to achieve 6b accuracy, the gain mismatch CTa IQ between channels needs to be 

smaller than 1.8%. 

SNR = 20 log 10 a 

L°"«J 

+ 3 (dB) (52) 

4.1.3 Converter offset 

Converter offset mismatch can be modeled by simply adding a DC level with the input 

signal that is unique for each channel. Assuming that for each individual analog channel, the 

analog input signal is Asm{(oint) + Dm, then, the digital spectrum for time-interleaved arrays 

can be derived. 
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For a input signal sin(ty,„/) + Dm, the Fourier transform is given by 

Fa  (co) = Aj7t[(ô (œ + co i n  )-â(û)-û> i n)] + 2 xDmô(eo) (53) 

Substituting (53) into (23), we can derive 

(54) 
£ Aj7c[S(G> + CÛIN -k —) - Ô(CÙ - Û)IN - k —-)] 

T k=-co I I 

+ i  I £Kk)2xS(m-k^-) 
T k=-<x> Ml 

where 

1 -jkm— 
D(k) = ±:Y.Dme « (55) 

A» m=0 

It is easily to prove that 

D(k) = D*(M - k) (56) 

So, we have 

I D(k) H D\M-k) H D(M - k) | (57) 

The first term in equation (54) is the well-known digital spectrum representation of a 

uniformly sampled sine wave signal [46]. The second term is the spectra due to analog 

channel offset mismatch. As we can see from equation (54), the spectra lines due to channel 

offset mismatch are located at the fraction of the sampling frequency, as shown in Figure 22. 

This will not degrade the performance of the A/D converter if the tone at fs/4 and fs/2 is not 

frequency dependent [47]. However, if the channel offset between the arrays is dynamic 

offset as we discussed before, it will degrade the performance of the composite array. 
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Amplitude 
A 

|D(0)| 
!D(4)i 

D(l)l ;D(3)| 

i'D(2)i 

4 

, 
1 • 

fin L 
4 

A 
2 4 

.A Frequency 

Figure 22 Spectrum with channel offset mismatch 

Assume Dm is nonnally distributed with standard deviation of <rD and zero mean. The 

power of the noise in the range of (0,1/(20) is 

Af-l 

1 M~ l  M M~ l(D ^ 
noise = - E D(*) = ̂ 1 

" k=0 " m=0 

The signal power is 

v A / y  

14, 
w=0 

M 
% <j. (58) 

signal = (59) 

The signal-to-noise ratio is 

SNR = lOloglO 4 = 20logl0 
'  A '< 

V 
(60) 

\ z y 
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Equation (60) implies that if the amplitude of the analog input signal is increased by 2, or 

the analog channel offset mismatch of the array is decreased by 2, the SNR can be improved 

by about 6dB. 

Figure 23 shows the comparison between numeric results obtained by using equation (60) 

and the simulated results obtained by averaging 100 arrays using Matlab. Different from the 

previous two cases, the signal-to-noise ratio (SNR) is not dependent on the number of 

interleave. As we can see from Figure 23, the curve fit of the numeric results match the 

simulated results precisely. 

nurfreriç.regults __ j 
splid line — singulation) results 

CTd/A 

Figure 23 The relationship between SNR and converter offset 
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4.2 Whole architecture 

In Figure 24, the whole scheme is shown. In order to minimize the error introduced by the 

mismatch between converter arrays, all of the ADCs within the flash array share the same 

reference resistor string and each comparator shares the same preamplifier stage with the 

other converters in the array. To a first order, this eliminates variations in reference string and 

converter offset voltages from degrading performance of the converter array. Additional 

techniques are used to minimize interaction between converters and to minimize corruption 

of the input signal by regeneration induced noise. Two chips have been designed to explore 

b 

> > >y 

Preamplifier 

Four Latch 

4L 

i i  

1 o 
0 
G 

1 
PL, 

Bc<0:3> 

B4<0:3> 

Bj<0:3> 

B2<0:3> 

B,<0:3> 

Bfi<0:3> 

Figure 24 Block Diagram of A/D Converter 
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this unique idea. The design of these two chips will be explained in detail in this chapter. 

Figure 24 shows the basic blocks of both chips. However, the regeneration circuitry and 

clock generator were designed in different ways that will be explained later. 

4.2.1 Whole scheme 

The simplified block diagram of the A/D converter is shown in Figure 24. At the front end 

of this A/D converter are 64 comparators that compare the fully differential input signal and 

the differential reference voltage. This comparator array is followed by the error correction 

and 'One Of Circuitry' (OOC) that selects one of the 63 possible references as the estimation 

of the input voltage. The error correction circuitry removes any bubbles that may be present 

on the thermometer code in order to minimize the possibility of spurious output codes [49]. 

The output high of the error correction and One Of Circuitry enable one address of ROM to 

generator a 6b binary output for each channel. Bias reference and clock generator are also 

implemented on the chip. 

4.3 Design of the first prototype 

The first prototype was fabricated using a 3.3V digital 0.35 micron bulk CMOS process 

technology. On this chip, in order to minimize the effect of timing skew effects between 

converters, all clocks are derived on-chip via PLL (designed by Kae Wong ) which is locked 

to an externally applied 125MHz input clock. Also, provision exists for fine adjustment of 

individual clocks by an analog input pin associated with each converter. 
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4.3.1 Preamplifier design 

4.3.1.1. Finite bandwidth of preamplifier 

The preamplifier can be modeled as a simple low pass filter shown in Figure 25. The 

transfer function for the preamplifier can be derived as 

Starting at t=0, a sinusoidal signal is applied at the input 

VT (T) = v4sin(<y,f) (62) 

Then, at the output we can obtain 

and 

Û)0 = 
RC 

V. O-
R 

vwv -o v„ 

Figure 25 Simplified model of the preamplifier 
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The transient response at the output is (Appendix A) 

RQ(T) = A R-°*T + Y ^0(^0 sin(^iO ~ ̂ 1 cosÇ^Q) 

Equation (64) can be rewritten as 

(65) 

From equation (65), we can see that the first term on the right side is an error term due to 

finite acquisition time. And it approaches zero when time increases. Due to the finite 

bandwidth of the preamplifier, both amplitude and phase are modulated by the preamplifier, 

which is the second term on the right side. Now, let us find out the bandwidth of the 

preamplifier in order to have 6b accuracy. 

To achieve n-bit accuracy, the following condition needs to be met. 

For a 6b Nyquist rate analog-to-digital converter with sampling frequency of 500MS/s, 

when the analog input frequency to, is equal to 2n x 250MHz , in order to achieve 6b 

resolution, the 3dB bandwidth of the preamplifier GD0 needs to be greater than l.4GHz. 

4.3.1.2 Circuit design 

A 
(66) 

The schematic of the preamplifier is shown in Figure 26 along with the associated switch 

phasings. The input differential pair M, and M2 is used with a pair of sampling capacitors, 
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?A?À , p*., 

Figure 26 Preamplifier schematic and auto-zeroing timing 

which periodically sample and store the preamplifier offset voltage [11]. M3 and M4 are 

isolation transistors that decrease the kick-back to the input from the following regeneration 

stages and transistors Ms and M6 are used to limit the output swing. The loads of the input 

differential pair are well resistors R, and R2, which results in lower harmonic distortion than 

an active load [11]. S, and S2 are the switches for auto zeroing, which only occurs at about 

every 400 usee. By doing this, auto zeroing will not limit the conversion speed of the ADC 

comparing with conventional implementations, which performs the auto zeroing before every 

comparison [40][41]. During this period, switches S3 and S4 are closed to sample the 

reference voltage Vref). and V^. In order to decrease the charge feedthrough due to switches 

S, and S2, the switches S, and S2 are opened earlier than switches S3 and S4 which connect to 

the voltage reference. Switch Ss and S6 are not closed until all other switches are open. 

Source followers M7 and M, further isolate any kick-back and shift the DC level. 
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4.3.2 Latch design 

The schematic of the first comparator latch (latchl) is shown in Figure 27. All four 

channels of latches share the same input differential pair, which in turn is driven by a single 

preamplifier. With proper timing, the tail current flow through transistors Ml9 and M20 is 

nearly constant, which minimizes kick-back noise from the regenerators. Sharing of the input 

differential pair by all the latches also significantly reduces the effects of device mismatch on 

overall converter array performance. At any one time, two of the PLL generated clock signals 

Vbias„ Vbil52, Vbias3 and Vbil$4 are high, which means two channels are in track mode while the 

other two channels are in latch mode. By doing this, we can ensure the constant current mode 

operation, which is very important to reduce the noise on chip [42]. 

The schematic of the second stage latch (latch 2) is shown in Figure 28. When CLK goes 

w. 

Ma 

Figure 27 Schematic of latchl with all 4 channels 
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Figure 28 The schematic of latch2 

high, the output goes to VDD to minimize hysteresis. In order to minimize the possibility of 

upsetting latchl, latch2 is regenerated one quarter of a clock cycle after latchl regenerates. 

Timing is very critical in this strategy. In order to minimize the timing skew between the 

channels, the clocks are distributed using a tree structure, which results in nearly equal 

propagation delay to all switches and latches in each of the four converters. The error 

correction circuitry is used to remove any bubbles in the thermometer code prior to encoding. 

After the error correction circuit, the transition point is detected by the so called one of 

circuits or 'OOC'. The high output of the OOC will enable one address of ROM, which is 

programmed with a modified quasi-Gray code. The modified quasi-Gray code is similar to a 

conventional Gray code, but it may be converted to a binary code with only a single gate at 

the output of the ROM. A fast-switching low power ROM architecture is used here similar to 

that described by Deevy [SO] which requires almost no current under static condition and 

does not require a préchargé mechanism. The design of the digital encoder will be discussed 

later in detail. 
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4.3.3 Performance analysis 

4.3.3.1 Simulation result 

The whole scheme was simulated using HSPICE within the Cadence environment and 

shows good performance at sampling frequency of 500MS/s. It achieves higher than 5.5 

ENOB up to Nyquist rate. Even though it was tested under no mismatch and no noise 

condition in Cadence, switch injection might cause degradation of the performance. The 

setup for testing in Cadence is shown in Figure 29. As shown in this figure, the four channel 

outputs go through a high speed 'MUX' to be combined as one channel of 6-bit digital 

output. Then, the digital signal is converted to an analog signal by an ideal digital-to-analog 

converter. After that, the data were processed using Matlab. 

••Processingl 

Figure 29 Simulation test setup 

4.3.3.2 Testing result 

The chip was fabricated using HP 0.35p. CMOS technology. A die photograph of the chip 

is shown in Figure 30. The total die size including pads and various test circuitry is 3.3mm x 

2.4mm This chip was tested using a Tektronix TLA 700 series logic analyzer that is 

synchronized to the chip output data enable signals. 

/ / 
DUT 
/ / 
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Figure 31 shows the testing result from the logic analyzer. The sampling frequency was 

running at 500Msample/s and the analog input frequency is at 1.3MHz. As we can see in 

Figure 31, the output of the four channels are synchronized. The data from the Logic 

Analyzer were exported to the PC and analyzed. By doing Fast Fourier Transform (FFT), it 

turned out that the effective number of bits (ENOB) of each separate channel is about 4.1 and 

the ENOB of the combined four channels is only 2.5, which is 1.5 bit less than that of the 

each channel. The mismatch between the channels degrades the chip performance a lot. After 

debugging the chip, several error sources that degraded the performance of the chip were 

discovered. 

One thing that we found was that the multi-phase clocks from the clock generator had 

relatively high clock skew and each clock had relative high jitter. As we discussed earlier, the 

clock skew will contribute tones at fs/2 and fs/4, which will degrade the combined 

performance. Clock jitter will raise the noise floor and degrade the performance of each 

channel and the performance of the whole chip. There are many error sources that contributed 

to the clock jitter and the multi-phase clock skew. First, is substrate noise. The digital part of 

the system generated a lot of noise which disturbed the clock generator and degraded the 

jitter performance of the clock Second, it might be the clock generator design itself. For 

clock skew, mismatch between the delay cells in PLL would contribute to clock skew. Since 

it is very difficult to design the clock generator to have low jitter and low skew based on PLL 

on the noisy substrate, a simple technique was proposed for this work which will be 

explained later. 
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From the digital output captured by the logic analyzer, bumps around the midrange at the 

zero crossing of the sine wave were observed. This was suspected to be caused by the folding 

structure that was employed in the layout. In order to increase the matching performance of 

the resistor string for the reference, a folding structure was used for the resistor string which 

generated the reference. However, this caused a long delay of the signal from the comparators 

to the input of the encoder around midrange. Because of this, it might cause encoding error. 

( ' "i ip.ir il' -r 

I >i 11 jI I ml 

Figure 30 Die photograph 

Figure 31 Testing result from Logic Analyzer 
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4.4 Prototype of the second chip 

In this section, the prototype of the second chip is discussed. As we mentioned before, it is 

very difficult to design a low jitter and low skew clock generator in such a noisy substrate, so 

a simple design is proposed to generate low jitter and low skew multi-phase clocks. 

4.4.1 Multi-phase clock generator 

4.4.1.1 Scheme 

Employing time-interleaved technology into a FLASH architecture, very high speed 

ADCs can be designed. However, the high speed sample and hold always is the bottleneck to 

the speed of ADCs. Without a sample and hold, low jitter multi-phase clock generators are 

required in order to have good performance for ADCs. A simple and unique precise multi

phase clock generator is proposed. 

As we all know, a low jitter clock generator is critical in Nyquist data converter design. 

For 6 bits 500Ms/s flash converter, 20ps clock jitter will introduce 1 bit error to the system. 

So, a precise multi-phase clock generator is very crucial to achieve high performance. One 

possible way to implement multi-phase clock generator is by using PLL or DLL. However, 

mismatch between the delay cells will introduce systematic phase skew. Indeed, it is difficult 

to design even a single phase clock that will meet these jitter requirements. 

Figure 32 shows the whole scheme of the clock generator. At the front end is a Sine Wave 

Shaper that is a fully differential preamplifier to obtain high noise rejection. The Sine 
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Figure 32 Block diagram of multi-phase clock generator 

Wave Shaper has a DC gain of 4. After that, a buffer chain is used to further sharpen the 

rising and falling edge of the clock. These two complenentary clocks are the input of the 

timing window generator, which generate four different timing windows to control the 

switches. The timing window generator consists of two fully differential flip-flops connected 

as a divide-by-four Johnson counter[19]. Figure 33 shows the detail of the timing window 

generator. As we can from this figure, the two fully differential flip-flops cross coupled 

connected as a divide by-four Johnson counter. The timing window clock relative to the input 

clock is shown in Figure 34. Each timing window will pick one pulse out of four pulses. The 

frequency of each of the four clocks, Clk„ Clk2, Clk3 and Clk4 is only V* of the original clock 

signal Clk. 
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Figure 34 Timing window relative to each individual clock 
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4.4.1.2 Jitter analysis 

A useful approximation that is frequently employed in jitter analysis is "first crossing 

approximation" [51], and is illustrated in Figure 35. Assuming possible voltage error at zero 

crossing is AV„, then the timing error at the zero crossing point is given by AV„ devided by 

the slope at that point shown in equation (67). 

As we can easily see from equation (67), the higher the slope, the less the timing error 

with the same amount of voltage error. By using the first crossing approximation, we can 

predict the minimal timing jitter of the sine wave. As we know, the sine wave has the highest 

slope at the zero crossing, which is shown in the following equation. 

where f and A is the frequency and amplitude of sine wave. By having the Sine Wave Shaper 

at the input in the clock generator, the slope of the signal at the zero crossing point is 

increased by the DC gain, which implies that the jitter will equivalently decrease by the DC 

gain of the Sine Wave Shaper. Then, a chain of buffers follow the sine wave shaper to further 

decrease the rising and falling time of the signal with the high gain of the buffer at the trip 

point. The buffers are properly sized to optimize the driving capability and balance the rising 

edge and falling edge. As we mentioned before, multi-phase clocks with less than 20ps are 

required as they are to be used in 6 bits 600Ms/s Nyquist rate converters. In this clock 

generator, there are two main error sources. One error source is in the Sine 

(.slope) 
(67) 

sl0Pemax = 2nfA (68) 



www.manaraa.com

57 

Vf 

t 
Figure 35 The relation between the voltage noise and timing jitter 

Wave Shaper and buffer chain. In order to suppress the jitter, a low noise power supply and 

quiet ground are required. Also, fast rising and falling clock edges will help to keep the 

timing jitter low. The second error source comes from the mismatch between the switches. 

Careful layout is needed to minimize the mismatch between the switches and propagation 

delay. 

4.4.2 Comparator design 

Each comparator consists of a preamplifier and two stages of regeneration. All four 

channels share a single preamplifer with a gain of about 5. The reference strings are shared 

by all channels to minimize the mismatch between channels. As shown in Figure 36, all four 

channels share a single preamp with a gain of 10. Clock signals azl, az2 and az3 are clock 

zeroing, which only occurs about every 400usec. During auto zeroing, the preamp offset 

voltage will be sampled and stored. Offset mismatch between channels will decrease by the 
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Figure 36 The schematic of the comparator 

gain of the preamp, which is about 10. Clkl, Clk2, Clk3 and Clk4 are clocks generated from 

the multi-phase clock generator. Clkl out, Clk2out, Clk3out and Clk4out are buffered clocks 

of Clkl, Clk2, Clk3 and Clk4, which are used to trigger D latches that happen at the end of 

the regeneration cycle of the previous latch. The layout of the comparator is shown in Figure 

37. As we discussed, it includes one preamplifier, four latches and four D latches. In order to 

simplify the layout procedure, the comparator was designed so that sixty-three comparator 

cells may be placed adjacent to each other without additional global routing in terms of 

power supply, ground and substrate tie. By doing this, the whole layout procedure was 

simplified and more efficient 
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Four latches Four D latches Sampling capacitors Preamplifier 

Figure 37 Layout of the comparator 

4.4.2.1 Preamplifier design 

The schematic of the preamplifier is shown in Figure 38 along with the associated switch 

phasing. This preamplifier has two stages. The goal is to achieve high gain and high 

bandwidth. The preamp achieves a -3dB bandwidth of 1.5GHz based on simulation. The first 

stage is used with a pair of sampling capacitors, which periodically sample and store the 

preamplifier offset voltage[ll]. Source followers are used to isolate the inference between 

different channels and shift the DC level. Ss and Se are the switches for auto zeroing, which 

only occurs about every 400usec. During this period, switches Si and Si are closed to sample 

the reference voltage Vref+ and Vref.. In order to decrease the charge feedthrough due to 

switches Ss and Se, the switches S$ and Se are opened earlier than switches Si and Si which 

connect to the voltage reference. Switches S3 and S4 are not closed until all other switches are 

open. During auto zeroing, the sampling capacitors Ct and C2 help to stabilize the feedback 

loop. The capacitor value of Ci and C% are carefully chosen to guarantee enough phase 

margin and to ensure adequate matching performance. In order to achieve high density, the 
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Figure 38 Schematic of the preamplifer 

capacitors are implemented using metal 1, metal 2, metal 3 and metal 4 that are connected as 

a sandwich structure. 

Since the preamplifier amplifies the analog signal before regeneration. Any mismatch due 

to layout will introduce extra error into the system. The layout of the preamplifier was done 

very carefully. Figure 39 shows the layout of the preamplifier. In the schematic, signals at 

nodes C and D will be distributed equally to the source followers. Tree structures are used to 

Two-stage preamplifier 
! Source followers J 

Tree Structure 

Figure 39 Layout of the preamplifier 
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maintain equal propagation delay. The two-stage preamplifier was placed symmetrically to 

minimize the mismatch between the channels. 

4.4.2.2 Comparator latch design 

Switches S, and S2 are controlled by sampling clock SH. When SH goes high, both 

switches will be turned on. The differential signals from preamp will be sampled on the gates 

of M10 and Ml3. At the same time, transistors M7 and M8 will be turned on and transistors M$ 

and M6 will be turned off. The voltages at nodes A and B will be pulled up to VDD by 

transistors M7 and Mg. During this time, the latch is being reset. When SH goes low, switches 

S, and S2 will be turned off. The input signal will be stored on the gate of Ml0 and M,3. The 

change at the input will not effect the latch decision. Then, transistors M7 and Mg will be 

turned off and transistors M5 and M6 will be turned on. The latch then starts to regenerate the 

differential signal. The time-interleaved structure relaxes the timing requirement of each 

X 

Figure 40 Schematic of comparator latch 
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channel. For a four-array time-interleaved structure, each converter array works at one fourth 

of the combined speed. Hence, the comparator latch will have about 4x the time to 

regenerate the signal compared to a single channel system. When switches M$ and M6 are 

turned off, the charge injection noise will be coupled to the gates of transistors M, and M2 

that potentially steer the latch to the wrong direction in regard to the input signals. Sources 

followers M10 and Ml3 provide a low impedance path to minimize this effect so the signal 

sampled onto the gates of transistors Ml0 and M13 in only minimally disturbed by the charge 

injection noise. Source followers Ml0 and M13 also shift the DC level of the input. After this 

latch, the digital output will be stored in a conventional D latch prior to digital processing. 

4.5 Power supply and ground noise consideration 

As we discussed before, the power supply noise and ground bounce will introduce timing 

jitter to the multi-phase clock, which will raise the noise floor of the reconstructed output 

spectrum. Power supply noise and ground noise will appear as common mode noise for 

sensitive analog circuitry, such as the preamp. Depending on the circuitry common mode 

rejection, it may also appear as comparator offset. If the power supply noise and ground 

bounce are too high, it will significantly compromise the system. So, power supply noise and 

ground bounce need to be carefully considered. Where do supply noise and ground bounce 

come from? It can be explained using a simple inverter. 
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Figure 41 shows a simple inverter with its load capacitor. Li and L% are equivalent 

parasitic inductors combining both bonding wire and package lead. For a regular package 

such as a PGA, it could be as high as 6nH. When signals at the input go from low to high, the 

output will go from high to low. Load capacitor Cl will discharge through transistor and 

inductor L%. Since the discharge current is not constant, it will introduce voltage drop AV 

across parasitic inductor L%. It has the following relation with Lz and discharge current 

Idischarge. 

AV = (69) 
d t  

Hence, the voltage drop AV across inductor La, on chip ground B is not constant with the 

voltage at node B being VSS+AV. This is often called ground bounce. From equation (69), 

we can try to find several ways to minimize the ground bounce, substrate noise and power 

supply noise. 

VDD 

Ml 

Out 
tCi 

M2 
L2 

VSS 

Figure 41 Ground bounce and power supply noise 
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1) A package with less parasitic inductance should be used. Or chip-on board in which 

the die is bonded directly on board to avoid package lead inductance. By doing these, 

the parasitic inductance L% can be minimized which implies less AV. 

2) From a circuit design stand point, we should try to slow down the clock rising and 

falling edge, which will decrease di^,„K.T7dt. Constant current mode circuitry could 

also help to decrease ground bounce. Due to constant current mode operation, ideally 

didiichirge/dt would be zero, which implies zero ground bounce. 

3) We should try to keep signals fully differential on chip to minimize ground bounce 

and its effect. Since for fully differential structure, the charge injected into the 

substrate or power supply will be balanced by the same amount of charge being 

withdrawn. 

4) On-chip decoupling capacitors are favored in the point of minimizing the ground 

bounce, substrate noise and power supply noise. Decoupling capacitors act as a local 

'charge reservoir'. On-chip capacitors are more effective in minimizing power supply 

noise compared with off-chip capacitors because of the small interconnect inductance 

and good high frequency performance. 
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CHAPTER 5 DIGITAL CIRCUITRY AND SIMULATION RESULTS 

5.1 Error correction 

As we discussed before, for an ideal flash converter, the output of the comparators will be 

in the term of a "thermometer code". All zeros are above the input voltage and all ones are 

below the input voltage ( shown in Figure 42 (a) ). The transition from T to '0' can be 

detected and is easily translated into binary code. However, in reality, time skew and 

comparator offset may introduce ones within the zeros or vice versa, (shown in Figure 42 

(b)). Errors of this type are referred to as "bubbles". By using a simple two-input NAND or 

I 1 
(a)Ideal (b)Reality 

Figure 42 Bubbles in thermometer code 
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NOR gate to detect the transition from T to '0', the output 'high' will enable a single ROM 

word line. With "bubbles" in the outputs from the comparators, more than one transition will 

be detected this way, which means that more than one address line will be enabled. This will 

cause dramatic errors at the binary output. 

In this design, error correction circuitry is used to remove "bubble" before detecting the 

'l'/'0' detection [49]. The error correction scheme used here was proposed by Christopher 

W. Mangelsdorf. " The error correction scheme in the present circuit may be thought of as a 

voting process. Each comparator output is examined relative to its two nearest neighbors, and 

the output is changed if it disagrees with both." [49] 

The comparator output will be corrected based on the following equation. 

C2 = ' C2 + C2 ' C3 + CI • C3 (70) 

Where C2* is the corrected comparator output, C, and C3 are adjacent comparator outputs. 

If C% disagrees with both C, and C3, which means it is " bubble", it will be corrected. For 

example, if the output of C„ Q and C3 are '0', '1', *0', then the middle '1' is a "bubble" 

between ones. Through equation (70), it will be corrected as '0'. If the output of C„ C, and 

C3 are '1', '0', '1', then the middle '0* is a "bubble" that needs to be removed. The "bubble" 

removal is shown in Table 4. After correction, it will be corrected as '1'. After error 

correction, most common "bubbles" will be removed. Then, the detection of the transition 

from ' 1 ' to '0' can take place. The output of the detection circuitry will enable one address of 

ROM. However, there are some extreme cases in which "bubbles" can't be removed by error 

correction as shown in Table 5. 
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Table 4 Bubble removal 

Case 1 Case 2 Case 3 

Before After Before After Before After 
Correction Correction Correction Correction Correction Correction 

0 0 0 0 0 0 

C, 0 0 1 0 1 Bubble 1 

Q 1 Bubble 0 0 Bubble 1 1 Bubble 1 

c3 0 1 1 1 0 1 

1 1 1 1 1 1 

Table 5 Extreme case where the bubble can't be removed 

Case 1 

Before 
Correction 

After 
Correction 

0 0 

c, 1 0 

c2 0 Bubble 1 

c, 1 0 Bubble 

c4 0 Bubble 1 

1 1 

In Table 5, an extreme case is shown where the bubble can't be removed even after the 

bubble removal circuitry. Fortunately, because of the coding method used in the ROM 

encoder, the "bubble" left in the thermometer code would not cause dramatic error in 

encoding. We will explain this in the next section. 
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5.2 ROM encoder 

5.2.1 Modified quasi-gray code 

Converting the one-to-zero transition point directly into standard binary code may result in 

large errors in the digital output when two or more transition points exist in the thermometer 

codes generated by the array of the comparators. As we discussed before, even though bubble 

removal circuitry can remove the bubbles in some case, there are still some extreme cases in 

which the bubbles still exist. When multiple transition points appear in the thermometer code, 

encoding errors can be dramatically reduced by using some type of error-reducing 

intermediate code [52]. One of the common error-reducing code is the gray code, in which 

only one bit is allowsed to change between adjacent digital codes. The modified quasi-gray 

code scheme not only has the quasi-gray code advantage, it also has less gate delay when 

converting the modified quasi-gray code into binary code [52]. Sixty four possible modified 

quasi-gray codes will be stored in ROM. Based on the detection circuitry, one address of the 

ROM will be enabled and encode the thermometer code into binary code. An algorithm for 

converting a modified quasi-gray code into binary code is shown in equation (71). The 

modified quasi-gray codes corresponding to the decimal codes from one to seven are shown 

in Table 6. 

K =c„; 

6,. =c, ©c,+l; (71) 

&0 = C0; 

where n is in the range of (1, n+l). 
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Table 6 3-bit modified quasi-gray code 

Decimal Quasi-gray 
0 000 
1 001 
2 010 
3 011 
4 110 
5 111 
6 100 
7 101 

5.2.2 Low power ROM encoder 

A fast-switching and low power ROM encoder is used. It not only has a low power 

advantage, it can also prevent sparkle errors by proper sizing of the transistors [53]. In Figure 

43, a simplified ROM encoder is shown. All the modified quasi-gray codes are stored in 

ROM. The drain of the transistor will be tied to high if'1'is stored, or the drain of the 

address line 

address I 

\  T / '  
bit line 

Figure 43 ROM encoder 
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transistor will be tied to low if '0' is stored. Unless the address line is enabled, the bit cells 

will not draw any current ensuring low power operation. If both address: and address^ are 

enabled, the output would be well defined instead of "can't be decided" because the pull 

down transistors have two times the W/L of the pull up transistor. 

5.3 Simulation result 

The whole scheme was simulated using HSPICE within the Cadence environment and 

shows good performance at fs=500MHz. The setup for testing in Cadence is shown in Figure 

29. The output data from the ideal digital-to-analog converter were processed using Matlab. 

After FFT, SNDR can be calculated. Figure 44 shows the simulation SNDR versus the input 

frequency at a sampling frequency of 500MS/s. As we can see, SNDR of the ADC is higher 

than 35.5dB at the Nyquist rate. 

SNDR vs. Frequency 

37 

35 
0.00E+Q0 1.00E+02 2.00E+02 3.00E+02 

Frequency(MHz) 

Figure 44 Simulated SNDR vs. Frequency at fs=500MHz 
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CHAPTER 6 LAYOUT CONSIDERATION 

6.1 Floorplan 

The overall chip floorplan is shown in Figure 45. As we discussed before, the comparator 

cell design is done in such a way that the sixty-three comparator cells are easily stacked in a 

single column. The power lines, n-well ties and substrate ties are running through each cell to 

ensure low impedance connections. The main power lines are placed both at the top and 

bottom and are designed to be wide enough to avoid metal migration. 

tri ek-genera or 
; Power 

Comparator 
Comparator 

I Encoder 1 

Comparator 
Comparator 

I/O buffers 

• On-chip decoupling 
I capacitor 

Figure 45 Floorplan 
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6.2 Noise suppression 

As we discussed before, careful design can minimize the power supply noise and ground 

bounce. Careful layout considerations are also required to suppress the power supply noise, 

ground bounce and interference in order to achieve high performance. Figure 46 shows the 

die photo of the whole chip with active area of 2.08 mm2. Since an A/D converter is a mixed 

signal system, careful partitioning is required during layout to minimize the interference 

between sensitive analog circuits and noisy digital circuits. Analog inputs are separated from 

noisy pins by pins dedicated to the power supply or ground. In the layout, shielding has been 

used where noisy clock lines are running through sensitive analog signals, such as the output 

signals of the preamplifiers before latches. 

As many pins as possible have been dedicated to power supply and ground to reduce the 

parasitic inductance due to bonding wires and package leads. Also, on chip de-coupling 

capacitors (about InF) are added to further minimize the power supply noise and ground 

bounce. Since the process that we used is a high impedance substrate process, noisy digital 

circuits are placed far apart from the sensitive analog circuits to help minimize the 

interference through the substrate [54]. Large output buffers are placed as far from the analog 

circuits as possible. A loop of guard ring is place around the digital circuits to collect the 

substrate noise generated by noisy digital circuitry. The substrate and guard ring are tied to 

dedicated quiet pins and as many pins as possible are dedicated to substrate ties in order to 

suppress substrate noise [55]. 
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Figure 46 Die photo 
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6.3 Clock distribution 

As we discussed before, 20ps timing error will degrade the performance by 1 bit. Careful 

clock distribution is required to maintain good performance. The tree structure shown in 

Figure 47 has been used to maintain nearly the same propagation delay on important clock 

and timing lines. 

© 

®  ® ®  ® ®  ® @  ®  

Figure 47 Tree structure 

As shown in Figure 47, by using the tree structure, the signal delay from point A to B;, 

i=l,2,.. .,7 can be maintained the same. 

6.4 Channel routing 

One disadvantage of our proposed architecture was discovered during the layout. Between 

the comparator array and error correction circuitry, more than 1,500 paths needed to be 

connected. We refer to this routing as channel routing, which is shown in Figure 48. Since we 

could not use an auto routing tool like Silicon Ensemble, the channel routing was done 

manually, which turned out to be very tedious. 
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Figure 48 Channel routing 
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chapter 7 testing 

Two four layer Printed Circuit Boards (PCB) have been designed using EAGLE™ and 

fabricated to test this high speed A/D converter. The first board was designed to test the die 

packaged in a TQFP64 package. From the testing result, it showed that the chip can work up 

a to 600MHz sampling speed and achieved an SNR higher than 32dB with up to 30MHz 

analog inputs. Approximately 200mV peak to peak ground bounce was observed on the 

board. In order to minimize the ground bounce and power supply noise, another four layer 

PCB was designed to enable chip-on-board testing in which chips were bonded onto the 

Printed Circuit Boards directly to avoid package leads. This chip and PCB combination 

achieved a highest acquisition speed of900MS/s. 

7.1 High speed PCB design 

7.1.1 Bonding diagram 

The bonding diagram of this analog-to-digital converter is shown in Figure 49. In the total 

of 64 leads, twenty-six are digital outputs. A total of twenty-three leads are tied to power 

supply, ground and substrate. There are four other leads dedicated to guard ring and 

shielding. The rest of the leads are for analog inputs and reference bias inputs. 
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Figure 49 Bonding diagram 

7.1.2 Package 

A Thin Quad Flat Pack ( TQFP ) package with 64 leads was initially used which has 

relatively good high frequency performance. It has relative low parasitic inductance in 

comparison to PGA and DIP packages. In Table 7, computed lumped element electrical 

parameters for 10 x 10 x 1 mm 64 lead TQFP package are given [56]. As we can see from 
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Table 7, for TQFP64 packages, the total parasitic inductance of the leads at the comers are 

relatively high, such as lead 01 and lead 16. From Table 7, we can observe that the total 

parasitic inductance for the corner leads is around 4nH, while the total parasitic inductance 

for the center leads is around 3.2nH. 

Table 7 Partial self inductance, bulk capacitance and self resistance 

PACKAGE LEADS PACKAGE 

BOND WIRES 

L(nH) C(pF) R(mfi) L(nH) C(pF) R(mfi) 

Lead 01 1.657 0.366 22.324 2.229 0.180 95.772 

Lead 02 1.570 0.397 21.773 2.139 0.184 92.931 

Lead 03 1.497 0.384 20.657 2.073 0.177 90.331 

Lead 04 1.428 0.373 19.792 2.016 0.172 88.433 

Lead 05 1.364 0.364 18.949 1.958 0.167 86.601 

Lead 06 1.317 0.358 18.359 1.912 0.163 85.271 

Lead 07 1.280 0.353 17.825 1.901 0.162 84.878 

Lead 08 1.243 0.361 17.736 1.907 0.166 84.543 

Lead 09 1.233 0.360 17.726 1.911 0.166 85.552 

Lead 10 1.264 0.353 17.915 1.902 0.163 85.448 

Lead 11 1.307 0.355 18.379 1.920 0.163 86.125 

Lead 12 1.356 0.364 19.113 1.940 0.167 86.719 

Lead 13 1.411 0.372 19.910 1.984 0.171 88.704 

Lead 14 1.481 0.383 20.740 2.062 0.178 91.521 

Lead 15 1.558 0.395 21.854 2.146 0.184 94.581 

Lead 16 1.657 0.368 22.196 2.238 0.181 97.659 



www.manaraa.com

79 

7.1.3 High speed four layer board design 

High speed PCB design is also important in high speed integrated circuit testing. When 

signal frequencies go higher than 100MHz, RF effects come into play [57]. 

• =i Signal Layer 
Dielectric Layer 

' • RF Ground Layer 
Dielectric Layer 

• • DC Power Layer 

Dielectric Layer 
' • DC Ground Layer 

Figure 50 Cross-section of the four layer PCB 

Figure 50 shows the cross-section of the four layer PCB. The first layer is the signal layer. 

The second layer is the RF ground layer in order to have precise impedance control for high 

speed RF signals on the first signal layer. Since the analog signal and clock signal are 

running at high frequency (higher than 200MHz), the width of the signal route and the 

thickness of the dielectric layer between the signal layer and RF ground layer are precisely 

controlled to ensure matched impedance [58]. 

Figure 52 shows the first signal layer of the board. The fully differential input signals are 

generated through a transformer with a center tap. The DC bias of the center tap of the 

transformer is generated using a reference regulator AD780 from Analog Devices, Inc. Four 

channels, totaling 24 bits along with two trigger clocks are brought out from the chip and 

connected to a high speed TLA 711 Logic Analyzer from Tektronix. Figure 52 shows the 

photograph of the PCB. 
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Figure 51 First signal layer of the board 

Figure 52 Photography of the board 
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7.1.4 Testing Setup 

Figure S3 shows the testing setup. Twenty-four digital outputs are collected using a high 

speed TLA 711 Logic Analyzer. By performing an FFT on the analyzer outputs, we have 

determined the dynamic performance of the chip, including SNDR and ENOB. 

7.1.5 Testing results 

As we previously mentioned, four channels, totaling 24 bits are brought out from the chip 

and collected by the high speed logic analyzer. The logic analyzer permits a high speed 

sampling function at 2Gsample/s. Figure 54 shows the output of the trigger clock signal and 

the four combined outputs. As we can see, the four channels are synchronized by the internal 

clock. The glitches are caused by improperly sampling because the analyzer timing is not 

synchronized with the A/D converter. By properly establishing the trigger point, the four 

channels of digital outputs can be obtained, which is shown in Figure 55 

Power 
Sources 
HPE3631 

Logic 
Analyzer 
TLA7111 

Sinusoidal 
Source 
HP8648C 

Figure 53 Testing setup 
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Figure 54 Trigger clock and synchronous four channels output at f, = 600MHz and fm = 
34.1MHz 

Figure 55 Four channel digital output with proper timing synchronization 
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Based on the timing and digital outputs, the correct trigger points can be set for the four 

individual channels. Then, the digital outputs can be collected only at the proper trigger 

points. Figure 55 shows this digital output. Then, the data can be exported and analyzed 

through the PC. The chip has been tested at 600MHz sampling frequency. For each test, 4096 

points were collected using the TLA 711 Logic Analyzer. The data were exported to a PC for 

FFT. In order to minimize the "leakage" due to FFT, a window function called Black-

hamming window was applied before FFT. Then, the SNDR and ENOB can be determined. 

Figure 56 shows the SNDR vs. analog input frequency when fs = 600MHz. 

SNDR vs. Frequency 

I 40 -
5  30-
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Figure 56 SNDR vs. Frequency at fs = 600MHz 

From the testing results, we observe that the ENOB of each channel is only a little smaller 

than that of the combined data. This implies that the converter offset mismatch, gain error 

mismatch and clock skew only contribute a small amount of extra error into the system. 

However, we observed that ground bounce of 200mv peak to peak exists on the Printed 

Circuit Board. In order to minimize the ground bounce and power supply noise, we turned to 

5.00E+01 1.00E+02 

Frequency(MHz) 

1.50E+02 
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a chip-on-board testing architecture. In this architecture, the raw dies are directly assembled 

on the Printed Circuit Board (PCB) without using any package. By doing this, the parasitic 

inductance due to package leads can be eliminated. Also, the wire bonds can be shortened by 

arranging the PCB bonding pads closer to the die. All these help to minimize the parasitic 

inductance dramatically. In order to minimize ground bounce of analog circuitry and 

substrate noise, the analog ground pins and substrate pins are down-bonded directly to the 

ground plane. This will cut the wire bond inductance to an even smaller value. 

7.2 Prototype of the second PCB 

7.2.1 PCB design 

The second high speed PCB design follows the same theory of the first PCB design. It is a 

four layer board with a size of 4.5" x 5". The bonding pads on the board are properly placed, 

so the die can be bonded directly onto the board. All the bonding pads on the board are 

placed as close to the die as possible to minimize the bonding wire. 

Figure 57 shows one of the four layer PCBs for chip-on-board testing. The testing chips 

were bonded directly onto the PCBs by Polarfab Inc. By doing chip-on-board testing, the 

chip achieved a highest functional acquisition speed of 900MS/s. Figure 58 shows the 

synchronous four channels output with sampling frequency at 900MHz and analog input at 

1.1MHz. As we can observe from Figure 58, the combined output of each channel gives a 

good sine wave output even at 900MS/s. 
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Figure 57 4 layer PC board for chip-on-board testing. Board size is 4.5" x 5 

Figure 58 Synchronous four channels output at £=900MHz and 4=l.lMHz 
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7.2.2 Testing results 

Figure 59 shows the FFT results of the combined four-channel digital output at an analog 

input frequency of 11.7MHz with sampling frequency of 600MS/s. The signal peaks 

observed at 88.5MHz and 105.3MHz are introduced by local radio station. The measured 

SNDR is 33.2dB, which implies the ENOB is equal to 5.22 bits. From Figure 59, we can't 

observe any tones due to mismatch between the channels in terms of gain, converter offset 

and timing skew, which implies that the individual ADCs are inherently almost identical in 

terms of gain and converter offset. However, at higher frequency, due to timing skew, the 

composite ADC performance is degraded by the timing skew between the channels. The 

performance comparison of the composite ADC and the average of four individual ADCs at a 

sampling frequency of 600MS/s is shown in Figure 60. As we can see, at low frequency, the 

timing skew doesn't degrade the performance of the composite ADC. However, the 

performance of the composite ADC rolls off compared with the average SNDR of four 

individual ADCs. As we discussed before, the signal-to-noise ratio due to timing skew is a 

function of a,fin/fs.As the analog input frequency fin increases, the noise contributed to 

the system due to timing skew will increase. With sampling at 600MS/s, SNDR of the 

composite ADC is about 2dB less than that of the average of four individual ADCs at an 

analog input frequency of V« of sampling frequency. Overall, the mismatch between channels 

only degrades the performance a little, which implies that the technique that we demonstrated 

here to minimize the mismatch between the channels in terms of gain, converter offset and 

timing skew is effective. Figure 60 shows the measured SNDR of the converter as a function 
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t'm =88.5MHz 

Figure 59 FFT at fin=l 1.7MHz when sampling at 600MS/s 
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Figure 60 Performance comparison between composite ADC and average of four individual 
ADCs with sampling frequency of600MS/s 
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of the input frequency at a sampling frequency of 600MHz. The SNDR of the converter is 

higher than 29dB with input frequencies up to 150MHz 

Figure 61 shows the performance comparison between the two different boards. The 

sampling frequency for both tests is 600MHz. As we can see, chip-on-board testing really 

makes a difference in the high frequency range. About lb improvement is achieved at an 

input frequency of 150MHz. There are two reasons for this improvement of the ADC 

performance. 

1) Chip-on-board testing allows the dies to be bonded directly onto the Printed Circuit 

Board. As shown in Table 7, the parasitic inductance due to package leads is about the 

same as that of the bonding wire for package type TQFP64. By doing chip-on-board 

testing, the package leads have been eliminated, which implies that the total parasitic 

inductance has been reduced to half of the original size. Also, the bonding wires are 

35 
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Figure 61 Performance comparison between two different board methods 
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shorter than that with package. In conclusion, for chip-on board, less parasitic 

inductance appears at the I/O pins. 

2) The digital ground plane and analog ground plane are connected through ferrite bead 

on the Printed Circuit Board instead of having one big plane for digital ground and 

analog ground. In this specific design, the digital ground bounce was much higher than 

the analog ground bounce. By having one big ground plane for both digital ground and 

analog ground, the digital noise will interfere with the analog circuitry through the 

ground plane, which degrades the performance. 

Due to both efforts on the second testing board, the ground bounce is much less than 

before. About 80mV ground bounce was observed at the analog supply of the second board, 

compared with 200mV peak to peak ground bounce that was observed with the first testing 

board. 

Figure 62 SNDR vs. Sampling frequency at input frequency of 1.1MHz 
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Figure 62 shows the measured signal to noise and distortion ratio (SNDR) of the converter 

as a function of the sampling frequency with a fixed input frequency at l.lMHz. As we can 

see from Figure 62, SNDR of the converter stays flat and starts to roll off at a sampling 

frequency of 880MHz. The converter achieves higher than 31dB performance even at a 

sampling frequency of900MHz. 

The chips have been tested to higher than 400MHz analog input frequencies at 900MHz 

sampling frequency. Figure 63 shows SFDR as a function of input frequency. From Figure 

63, we can see that SFDR is higher than 30dB even with input frequency higher than 

400MHz at 900MS/s. 

One comparison with previous work is shown in Figure 64. Our work achieves higher 

signal to noise and distortion ratio at much higher analog input frequency at sampling 

frequency of900MS/s. 

500 360 190 200 100 

Figure 63 Measured SFDR as a function of input frequency at 900MS/s 
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Performance comparison 
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Figure 64 Performance comparison at sampling frequency of900MS/s 

Table 8 Experimental summary 

Resolution 6b 

Maximum Acquisition Speed 900MHz 

Active area 2.08mm2 

SNDR 

Fin=l.lMHz, fs=900MHz 

31dB 

SNDR 

Fin=l 50MHz, fs=600MHz 

29dB 

Power dissipation fs=600MHz 250mW 

Analog part (150m W) 

Digital part (100mW) 

Power dissipation fs=900MHz 450mW 

Analog part (200m W) 

Digital part (250mW) 

Power supply 2.5volts 

Technology 0.25|i CMOS technology 
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7.3 Future work 

The time-interleaved architecture can achieve even higher conversion speed if we can find 

a better way to generate multi-phase clocks. PLL or DLL should be a more efficient way to 

do this if phase jitter and phase skew can be minimized. My colleague Lin Wu did a lot of 

research on this and achieved great results[59]. The future work would be to combine her 

clock generator technique with the time-interleaved ADC architecture and achieve higher 

than lGS/s ADCs. 
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chapter 8 properties of the vcr 

As we mentioned before, high linearity and high resolution A/D and D/A converters are 

demanded for measurement equipment, digital video systems and digital audio applications. 

Starting from this chapter, a novel and highly linear device — voltage controlled resistor 

(VCR) will be introduced and analyzed. The calibration principles of the VCR for matched 

current sources are demonstrated. Due to the high trimming resolution, high precision digital-

to-analog converters can be designed based on this technique. 

8.1 Structure of the VCR 

Figure 65 shows the structure of the VCR. It is designed to be fabricated in conventional 

n-well CMOS technology. The device appears similar to a MOSFET, however the poly or 

metal gate is over field oxide instead of thin oxide. The mechanism whereby the resistivity is 

modulated by the gate voltage is the variation in the well surface electron concentration with 

applied bias. For example, a positive gate bias which increases the electron concentration 

near the surface will decrease the resistance of the VCR (if it is fabricated in an n-well 

process). 
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Figure 65 Cross Section of VCR 

8.2 Characteristics of the VCR 

The finite element device simulation software ATLAS™ was used to simulate the 

characteristics of this device and to confirm the assumptions. The simulated cross-section of 

the n-well electron concentration distribution for a two- gate VCR structure is shown in 

Figure 66. The interface between oxide and substrate is at y=0 and the thickness of the field 

oxide is about 1pm. Each of the two gates is 4pm wide. From the scale of Figure 66, it can be 

seen that gate 1 goes from x=5pm to x=9*im and gate 2 goes from x=llfim to x=15jim. The 

spacing between gates is 2|im and five volts is applied to both gates. The lateral voltage drop 

between terminal D and S is 1 volt. In order to observe the adjustment of electron 

concentration underneath the gates more clearly, Figure 67 show a close-up of the region 

between the gates. 
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Figure 66 Electron Concentration distribution from ATLAS™ 

From Figure 67, we can easily see that with a bias voltage of 5 volts applied to the gates, 

the electrons are attracted to the surface of the n-well. However the surface electron 

concentration around 10 (x-direction) in this picture is not changed. The reason for this 

is that there is no gate overlay on the top of the field oxide from x=9gm to x=l l|im, and 

Field Oxide 

Figure 67 Electron distribution between the gates in the n-well 
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hence no vertical electrical field exists there to attract electrons to the surface. 

A single gate VCR structure with a metal field overlay layer was fabricated in a 2 gm n-

well CMOS process (via MOSIS) and evaluated at different bias and temperature conditions 

using an HP4145A parameter analyzer and a temperature controlled oven with packaged 

parts. The following table shows the measured results. 

Table 9 The resistance of VCR and change in resistance at different 
temperatures (MOSIS 2\I technology) 

T(°C ) R ( kQ ) at 
VGS=0V 

R ( kti ) at 
VGS = 5V 

AR/R (%) 

0.0 6.53 6.28 3.83 
9.7 6.98 6.70 4.01 
19.9 7.45 7.16 3.89 
24.7 7.69 7.38 4.03 
29.9 7.94 7.62 4.03 
35.1 8.21 7.88 4.02 
39.9 8.46 8.12 4.02 
50.2 9.02 8.64 4.21 
60.3 9.60 9.20 4.17 

Table 10 The resistance of VCR and change in resistance at different 
temperatures (TSMC 0.25p. technology) 

T(°C) R(kQ) R(kQ) AR/R(%) 
Vgs=0V Vgs=5V 

0 2.1840 2.1243 2.812 
20 2.3073 2.2448 2.784 
40 2.4653 2.3988 2.771 
60 2.6338 2.5652 2.674 
80 2.8173 2.7418 2.754 
100 3.0470 2.9656 2.745 
120 32341 3.1478 2.742 
140 3.4473 3.3550 2.751 
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From Table 9, about a 4% resistance change was observed with gate bias voltage changing 

from OV to SV. The measured change in resistance due to gate biasing only depended weakly 

upon temperature. 

Another set of devices was fabricated using TSMC 0.25fi CMOS technology. The test 

structure are VCRs of L=24um (y direction) and W=12um (z direction) with 80um spacing 

between in the z direction (Figure 65). It was measured using an HP4155A Semiconductor 

Parameter Analyzer. About 2.8% resistance change was observed with gate bias changing 

from OV to 5V as shown in Table 10. This data also shows that the measured change in 

resistance due to gate biasing only depended weakly upon temperature. 

8.3 Proposed models for VCR 

8.3.1. DC model 

A 4-terminal model and a 3-terminal model for diffused resistors were previously 

proposed [60]-[64], A simplified DC model has been derived for this 4-terminal Voltage 

Controlled Resistor. With voltage drop along drain and source, the drain current is the 

summation of ID,(current in n-well) and ^(current due to electron accumulation close to 

the well surface). ID, is given by (Appendix B) 

r _ 9PP W
VDSWeff 

1D\ ~ } XjeST 
LEFF 

(72) 
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where p. is the electron mobility in n-well, Nw is the electron concentration in n-well, and 

VDS is the voltage drop across drain and source. Wc(r and Leff are the effective width and 

length of the channel in the n-well region and is the effective depth of the n-well. 

+| + <73> 

Xj0 is the metallurgical junction depth. is the build-in voltage and a is the depletion 

width factor, which can be derived using the following equation. 

« = ?eA^ (74) 
V qNJNw N )̂ 

<p = —\n(NwN
2
sub ) (75) 

Nw is the doping concentration in the n-well and is the doping concentration in the 

substrate. The drain current due to electron accumulation close to the n-well surface can be 

calculated using the following equation. 

IDÏ ^es ~ 0 
(76) 

/D2 = 2"'c"  ̂(VGS Vas> 0 
V 2 

where p.' is the electron mobility in the accumulation channel which is a function of electron 

concentration. The total drain current is 

ID — Ipi +^£>2 (77) 
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8.3.2 Macro model 

A SPICE macro-model of this device has been developed based upon the equation 

above with various parasitic elements as shown in Figure 68 (a). The device is shown 

symbolically in Figure 68 (b). 

Figure 69 shows the relation between Ids and Vgs of the VCR (fabricated in TSMC 0.25 

(j. technology) at Vds equal to 2 volts. The curve fit DC model of equation (77) matches the 

testing result to a maximum deviation of 0.03%. From this figure, we can see that Id has a 

nearly linear relation with Vds. About 2.8% resistance change was observed with gate bias 

changing from Ov to 5v. Due to the gate overlay being on the top of the field oxide, Cox is 

much smaller than that of a thin oxide MOSFET. By adjusting the bias voltage on the gate, 

we have fine control of the resistance of the n-well resistor. 

Hh #-| 

VCR 

H h  •ti—1 

VJ 

_L 
D 

B 

(a) Macro-model of the device (b) Symbol of the device 

Figure 68 VCR models 
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Figure 69IDS versus VGS 
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CHAPTER 9 CALIBRATION PRINCIPLES WITH VCR FOR 
MATCHED CURRENT SOURCES 

9.1 Current calibration principle 

A favorable way to achieve matching currents is dynamic element matching. The basic 

idea is to dynamically adjust components (typically current sources) in order to make them 

match [28]. Figure 70(a) shows the basic operation of the system, which has calibration mode 

and operational mode. 

In the calibration mode, switch Si is closed and S% is switched to Ircf. During this time 

period, the gate voltage Vg$ of Mi is calibrated. Then, in the operational mode, Si turns off, 

and S% switches to the current output. In an ideal scenario, the gate voltage V# of Mi will not 

change because the charge is stored on the gate capacitance Cg$. Provided that of Mi is 

the same, IoUt is expected to be the same as W. In reality, however, there are two major error 

sources. 

9.2 Calibration principles with VCR for matched current sources 

Figure 70(a) shows the basic operation of the system. It has calibration mode and 

operational mode. In the calibration mode, switch Si is closed and S% is switched to Ircf. 
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(a) Ideal scheme 

Figure 70 Dynamic calibration 

Figure 70 (b) shows the real calibration circuit. One error comes from switch Si, which is 

implemented by MOSFET. When the operation of the system transition from calibration 

mode to operational mode, Si turns off, its channel charge qCh is partially dumped onto Cg$. 

The changes in charge on C# implies the voltage change of Vgs. Based on the characteristic 

of MOSFET, lout will differ from Iref [65]. 

(78) 

where p. is electron mobility, Cox is oxide capacitance density, W , L are channel width and 

length of Mi respectively. 

(b) Real scheme 
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In equation (78), the second term on the left is the error term introduced by charge 

injection when Si turns off. Another error source is reversed-biased diode Di, which is the 

diode between source and substrate of Mi. Even though it is reverse biased, the leakage 

current will discharge Cgs, which implies that the gate voltage will droop. This will also 

cause lout to differ from Iref. The time dependent drain current due to the diode leakage is [65] 

where 

Iteak is the leakage current of diode Di 

In equation (79), the second term on the left is the error term caused by the leakage of Di. 

Equation (79) implies that after a certain time, the current cell needs to be calibrated again to 

keep lout in a certain range of Iref. From both equations, we can see that in order to keep the 

error small, channel width and length of MOSFET Mi needs to be large, especially the 

channel length. 

Figure 71 shows the scheme of a calibrated current source circuit which has been 

simulated using HSPICE™ [66]. It is a dynamic element matching circuit which can produce 

multiple output currents that are very closely matched. The MOS transistors MO, Ml, M3 

and VCR1 form the reference current. 

Output currents Ii and I2 will be alternately switched to M% in order to be calibrated. 

During the calibration cycle, the voltage at the gate of the VCR is adjusted by a high gain 

negative feedback such that the voltage at node A is equal to the voltage at node B. After 

ds.leak' 
(79) 
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Figure 71 Calibrated current source circuit 

calibration, the output currents are switched to Vdd through an output resistor. A macro-

model is used for the VCR during simulations. In order to simplify the simulation, based on 

equation (77), the relation between the resistance of VCR and bias voltage on the gate is 

assumed to be linear. Figure 72 shows the simulation results using Analog Artist™. The 

drain currents of M4 and Ms are plotted in the figure along with the calibration clocks. In 

order to demonstrate the ability of calibration, the resistance of the three VCRs were set with 

4% deviation to mimic the mismatch between VCRs due to process variations. Despite these 

mismatches, the currents can be calibrated to 0.01% precision. Because of the trimming 

capability of the VCR, the mismatch between MOSFETs can also be compensated, high 

precision D/A converters can be designed based on this high trimming resolution technique. 
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Figure 72 HSPICE™ simulation results 
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CHAPTER 10 CONCLUSION 

In the first part of this dissertation, a four way time-interleaved flash A/D converter is 

demonstrated using 2.5V digital 0.25 micron TSMC technology. The four on-chip ADCs 

share a common reference string and preamplifiers to minimize the mismatch between 

channels. By using two stage preamplifiers, the unity gain bandwidth has been maximized. 

Based on simulations, the overall unit gain bandwidth of the preamplifier is 6.7GHz and the 

DC gain of the preamplifier is around 5. Since four ADCs share the same preamplifier, any 

mismatch in terms of converter offset and gain mismatch will be decreased by the DC gain of 

the preamplifier. By doing this, nearly the same characteristics for each converters is 

achieved minimizing the performance degradation from mismatch between channels. 

A simple clock generator has been implemented to generate four phase timing clocks. 

Each clock is generated by routing one pulse out of four from the same original clock. By 

doing this, the timing skew between the clocks is minimized. Other techniques are also used 

to minimize the timing jitter of the clocks, such as distribution of the clocks using a tree 

structure that results in nearly equal propagation delay to all switches and latches in each of 

the four converters. Chip-On-Board testing architecture is adopted to test the chips. Chip-On-

Board testing allows us to minimize the parasitic inductance due to bonding wires. Since the 

dies are directly bonded onto the Printed Circuit Board (PCB), the parasitic inductance due to 
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package leads are totally avoided. From the testing results, about 1 bit of performance 

improvement is achieved comparing with conventional testing where the dies are packaged 

and soldered to the PCB. 

The four converter array together achieved a highest acquisition speed of 900MS/s. The 

measured SNDR is over 31dB at 900MHz with analog input at 1.1MHz, compared with 

SNDR of 28dB with analog input at 141kHz[8]. The SFDR of the ADC is higher than 30dB 

with analog input higher than 400MHz at sampling speed of900MS/s. It achieves 5dB higher 

than reported [8]. The SNDR of the converter is higher than 29dB with input frequency up to 

150MHz at sampling frequency of 600MS/s. The total active area is 2.08mm2 with a power 

dissipation of250mW at 600MS/s and 450mW at 900MS/s. 

In the second part of this dissertation, a novel Voltage Controlled Resistor scheme has 

been described for mismatch adjustment in analog CMOS circuits. A macro-model of this 

device has also been proposed and demonstrated. The DC characteristics of the DC model 

have been confirmed using finite element device simulation software ATLAS™ and 

experimentally verified using a conventional TSMC 0.25 pm CMOS process. From the 

simulation results, it shows that the current units can be calibrated to 0.01% precision. This 

trimming capability demonstrated high potentiality for mismatch adjustment in precision 

analog CMOS circuits, such as high resolution and high speed digital-to-analog converters 

which are based on equal current sources. 



www.manaraa.com

108 

appendix a transient response of the preamplifier 

r 

V; O W 1 O V0 

T 
I 

CL 

Figure A.1 Simplified model for a preamp 

The preamplifier can be modeled as a simple low pass filter shown in Figure A.l. The 

transfer function for the model can be derived as 

""-SS- H Î Ï  

Starting at t=0, a sine wave is applied at the input 

Vi (f) = A sin(<y,/)M(f) (A.2) 

Then, we can obtain at the output 

and 
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0)0 RC 

(A.3) can be rewritten as 

V Q ( S ) =  °  ^  +  —  

S + CÛQ S + jca | S — jco i 

(a + b + c)S2 + (-jbû)x +bcpQ + jccùx + c6>0).S + (a6>1
2 -jbû)0û)x + jcû)0û)x) 

(S + û>0)(S2 + o)x") 

(A.4) 

Comparing (A.3) with (A.4), we have 

a + b + c = 0 

- jbcox + bcûQ + jceox + ccoQ - 0 (A.5) 

<ZÛ>,2 - jbû)0û)x + jC(D0CÛx =(OqÛ>{ 

Solve (A.5), we obtain 

_ <VqCO\ 
a ~  2  2  ta, +<y0 

^ ~ ~ ^o2 

y'2(û),2 +<y0
2) 

û>02 ~ JœQœ\ 
c i r™ 

y2(a?r +0Q-) 

Substituting (A.6) into (A.4), we get 

-Û)Q2 CÙQ1-jCt)QÛ)x 

y i S ) m  «. + a >° )  +  7^0 ) (A.7) 
S + Û)0 5 + y0t S — y'û)] 

By doing inverse Laplace transform, we have 

(A.6) 
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2 „ 2 
r0«) + -JO><>a>i-<a( e-M' + B»' (A.8) 

Û>I +Û>o y2(û>, +Û)0") J'2(Û)\ +Û>0 ) 

(A.8) can be rewritten as 

r (,) = _a>A_e-*» + sin^y) - ̂  cos(fty)) 

ÛJj2 + Û)Q2 Û)[2 + <9Q2 
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appendix b vcr dc model derivation 

x=xj0 <-

Figure B.l Cross section of the VCR 

The electron charge density at point (x,y) in the n-well is qn(x,y). Assume the electron 

mobility is |i(x), then we have 

WTFF *=*/Y) 
ID\= J J qu(x)n(x)dxdz 

dV(y) 
(B.l) 

z=o x=o dy 

Assuming the doping in n-well is constant, n(x) is equal to Nw- (Nw is the doping 

concentration in n-well) 

IDI =QUNRX/Y)?MW0 

where Weff is the effective width of n-well resistor. 

(B.2) 



www.manaraa.com

112 

xj(y) = XJQ - CLyJ(p + V(y)-VB (B.3) 

Xjo is the metallurgical junction depth. <(> is the build-in voltage and a is the depletion 

width factor. 

(p = ~\ll(NwN,sub ) (B.4) 
9 nT 

2 eN, 
a  = J  —sub (B.5) 

Combining equation (B.2),(B.3),(B.4) and (B.5), we have 

IDxdy = Weff(qnNw{Xj0 -a^(p + V(y)-VB)dV(y)) (B.6) 

Integrating both side of equation (6), we obtain 

3 

lD\Leff =WeJT^^w
XjQVDS ~quNwCl^(<p + V(y)~ VB)2 | J£ )  (B.7)  

qjjNwxJ0VDs - -qyNwa[{<p + VD -VB)2 -(<p + Vs - VB)2 ] 
ID\ * ̂ EFFF ^ (B.8) 

Rearrange equation (A.7), we get 

3 3 

^auN,»aX(a> + Vn-Va
y 

V 

Assuming Vs = VB, then 

3 3 3 3 

(<P + yD-VB)1 =fa + VDB)i = VDBi(\ + 

DS 

3  3  1 3  _ J _  
88 VDB2 + + "^P^DB 2 (B 9) 

= VDS2 + 
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With equation (A.9), equation (A.8) can be simplified as 

/0, = (B.IO) 
Leff 

where 

2  1 3  J . 3  - 2  
Xjeff=XjQ-^a(VDS1+^(P^DS 1+~^ (PVDS 2)  (B.ll)  
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